
Hands-on Zephyr Project
Workshop
Navigating Low Power IoT Development with Practical Examples

Jonas Remmert

https://github.com/jonas-rem

1. Introduction
2. Development Setup
3. Workspace Application and Hardware Abstraction
4. Code Examples and Subsystems
5. Application Development
6. Summary

Table of Contents

Introduction

Jonas Remmert
SMIGHT GmbH
Developer for Low Power IoT products
Experience: RTOS (FreeRTOS, Zephyr), NXP MCUX, hardware development

Introduction

Combine theory with hands-on practice
Introduction to Zephyr RTOS
Setting up the SDK

On a Local Machine
GitHub Codespaces

Exploring key features
Hands-on development

Workshop Goals

What are your goals for the Workshop?
Have you used an RTOS before?
Your experience with Zephyr?

Audience Check

Hardware: Customer-specific hardware
solutions, focus on low-power embedded
systems
nRF9160 SoC: Development of IoT
applications using the Nordic nRF9160 SoC
for both hardware and firmware
Zephyr: Contributor to the Zephyr Project
Example: Pump Monitor, developed in
collaboration with BeST Berliner
Sensortechnik GmbH

Pump Monitor for BeST Berliner Sensortechnik GmbH

Areas of Work

Governed by the Linux Foundation
Vendor-neutrality: fairness and
interoperability
Technical Steering Committee (TSC) and
Working Groups (WG)
Security and tooling (e.g. SBOM) as
integral part
Alternative to vendor SDKs
Safety certification ongoing

The Linux Foundation logo

Open Source and Vendor-Neutral Governance

Examples

Overview: zephyrproject.org/products-running-zephyr
Wildlife Tracking and Protection (OpenCollar)
Wind Turbines (Vestas)
Irrigation (Gardena)
Hearing Aid (Oticon)
Wastewater Pump Monitoring (BeST Berliner Sensortechnik, German Railways - DB)

Zephyr for Products

https://www.zephyrproject.org/products-running-zephyr/

Development Setup

Zephyr Getting Started Guide

docs.zephyrproject.org/latest/getting_started/index.html1

1

Getting Started Guide

https://docs.zephyrproject.org/latest/getting_started/index.html

Linux, macOS and Windows are supported!

Overview of Components

Packages

git
Cmake
Python …

Zephyr SDK

Toolchains for different architectures

Python Tools

west, requirements.txt

IDE

Text editor, IDE (e.g. VSCode)

Repositories

Zephyr
Modules via west

1

Windows is supported, but will complicate development for Embedded Systems (e.g. no onboard package manager, often inconsistent Python environment setups).1

Setting up a Local Development Environment

Build and flash the application with west

reel board with blinking LED

cd ~/zephyrproject/zephyr
west build -b reel_board samples/basic/blinky -p
west flash

cd ~/zephyrproject/zephyr
west build -b native_sim samples/hello_world/ -p
west build -t run

*** Booting Zephyr OS build v4.1.0 ***
Hello World! native_sim/native

Testing the Local Development Environment

GitHub Codespaces

Cloud hosted development environment
based on devcontainers
Visual Studio Code integration
Runs on Microsoft Azure cloud
Configuration individual for each
repository Create a new Codespace

1

Open Source Alternatives: Gitpod, Eclipse Theia and many more1

Starting a Cloud Development Environment

Codespaces starting..

Codespaces in a Browser Window

Active Instance of GitHub Codespace

Virtual Machines in combination with embedded hardware can bring their own problems.

Prioritize a local environment over a cloud environment

Hardware is better accessible
Better integration of your own tools
Check vendor tools that can enhance your Zephyr Dev Environment

Recommendations from Experience

Start your own Codespaces Instance now!

github.com/jonas-rem/zephyr-workshop

Setup will take a few minutes…

Test your setup with the Hello World example:

Setup new Instance

west build -b native_sim zephyr/samples/hello_world -p
west build -t run

Recommendation: Use a 4-core setup instead of the 2-core default.

Note: You should have 120 core-hours per month free.

1

2

Hands-on 1 - Codespaces Setup

https://github.com/jonas-rem/zephyr-workshop

Workspace Application and
Hardware Abstraction

Workspace application or Out of tree build

Separate application from Zephyr repository

Independent version control for app
Different Licences for app?
Maintain references to Zephyr, Modules
etc. in app repo
Update Zephyr version independently
from app

1
zephyrproject

├── modules
│ └── hal
├── zephyr
│ ├── samples
│ ├── west.yml
└── zephyr-workshop
 ├── west.yml
 └── samples
 └── 01_hello_world
 ├── CMakeLists.txt
 ├── prj.conf
 ├── README.rst
 ├── sample.yaml
 └── src

docs.zephyrproject.org/latest/develop/application

github.com/zephyrproject-rtos/example-application

github.com/jonas-rem/zephyr-workshop

1

2

3

Workspace Application

https://docs.zephyrproject.org/latest/develop/application/index.html
https://github.com/zephyrproject-rtos/example-application
https://github.com/jonas-rem/zephyr-workshop

Manifests references repositories and modules
manifest:

 remotes:
 - name: zephyrproject-rtos
 url-base: https://github.com/zephyrproject-rtos

 projects:
 - name: zephyr
 remote: zephyrproject-rtos
 revision: v3.6.0
 import:
 name-allowlist:
 - cmsis
 - hal_nordic
 - hal_nxp
 - [..]

west.yaml manifest file in the zephyr-workshop repository

1

docs.zephyrproject.org/latest/develop/west/manifest.html1

Enabled by west and Manifest files

https://docs.zephyrproject.org/latest/develop/west/manifest.html

west repository management tool, developed
by the Zephyr community

Inspired by Google’s Repo tool and git
submodules
Cloning Zephyr repo, dependencies,
modules
Keeping project repositories synchronized
In addition building, flashing, and
debugging support

Navigate to the project root
$ cd zephyrproject

Update all repositories
$ west update

=== updating zephyr (zephyr):
HEAD is now at 468eb56cf24 [..]
=== updating cmsis (modules/hal/cmsis):
HEAD is now at 4b96cbb [..]
=== updating hal_atmel (modules/hal/atmel):
HEAD is now at aad79bf [..]

Understanding and Using west

Who: User creates one application for
testing
What: One variant of an application
Solution: Make changes inside the Zephyr
tree for simplicity1

Not recommended for production, use an out-of-tree build instead. This makes it easier to upgrade to more recent Zephyr versions.1

Application Structure - Use Case I

Who: One company developing one
product
What: Two variants of the product
Different sensors, pin assignments, but
similar application
Solution: Devicetrees for each variant

board_a.dts: west build -b
board_a app

board_b.dts: west build -b
board_b app

Application Structure - Use Case II

Who: One company developing multiple
products
What: Different applications
Solution: Separate applications
Use same Zephyr version for all
applications if you can

Application Structure - Use Case III

Who: Service provider developing
different products for multiple companies
What: Development states and lifecycle
for products differ
Solution: Individual manifest files for
each product
Create your own modules, share code
inbetween projects
Quickly setup and reference projects with
west

Application Structure - Use Case IV

Vendor HALs: Hardware abstraction
available from vendors. Abstracted via
Zephyr APIs and drivers
Devicetree: Decouples the application
from the hardware
Architecture: ARM, RISC-V, x86, ARC, NIOS
II, Tensilica, Xtensa
Other: 600+ boards, 180+ sensors

zephyrproject/zephyr:~$ ls arch/
arc CMakeLists.txt mips riscv xtensa
arm common nios2 sparc
arm64 Kconfig posix x86

zephyrproject:~$ ls modules/hal/
altera espressif nordic silabs
ambiq ethos_u nuvoton st
atmel gigadevice nxp stm32
cirrus-logic infineon openisa telink
[..]

zephyrproject/zephyr:~$ ls boards/
96boards firefly native_sim
actinius gd rak
...

Zephyr Hardware Abstraction

Describes the available hardware

Proven concept used in the Linux kernel
Single source for hardware information
Drivers and source are hardware
independent

In Zephyr: C header generation at compile time
devicetree Logo

devicetree.org1

Zephyr Hardware Abstraction - devicetree

devicetree node for the reel board: `boards/phytec/reel_board/dts/reel_board.dtsi`

arduino_i2c: &i2c0 {
 compatible = "nordic,nrf-twim";
 status = "okay";
 clock-frequency = <I2C_BITRATE_FAST>;
 pinctrl-0 = <&i2c0_default>;
 pinctrl-1 = <&i2c0_sleep>;
 pinctrl-names = "default", "sleep";

 mma8642fc: mma8652fc@1d {
 compatible = "nxp,fxos8700","nxp,mma8652fc";
 reg = <0x1d>;
 int1-gpios = <&gpio0 24 GPIO_ACTIVE_LOW>;
 int2-gpios = <&gpio0 25 GPIO_ACTIVE_LOW>;
 };

 ti_hdc@43 {
 compatible = "ti,hdc","ti,hdc1010";
 reg = <0x43>;
 drdy-gpios = <&gpio0 22 (GPIO_ACTIVE_LOW | GPIO_PULL_UP)>;
 };
};

Zephyr Hardware Abstraction - devicetree

Build the blinky sample:

Flash via Drag and Drop:

Download the binary from your
Codespace at:
build/zephyr/zephyr.hex

Drag and drop the hex file to the
mounted reel board mass storage device

Flash via native setup:

Attach to the serial console:

reel board

west build -b reel_board \
 ../zephyr/samples/basic/blinky -p

west flash

minicom -D /dev/ttyACM0 -b 115200

Hands-on 2: Let’s build Zephyr for the reel board!

Code Examples and Subsystems

Samples

Zephyr provides a wide range of samples
Samples are located in zephyr/samples/
Isolated functionality or feature

Tests

Tests are located in zephyr/tests/
Isolated test cases for a feature or hardware
Useful to test e.g. a device driver

Applications

Application Example: github.com/zephyrproject-rtos/example-application
ZSWatch - Open Source Smart Watch: github.com/jakkra/ZSWatch

Samples in Zephyr

https://github.com/zephyrproject-rtos/example-application
https://github.com/jakkra/ZSWatch

Description:

Simple Hello World program

Learn:

Test setup
Structure of a Zephyr application

Build and run:

1

west build -b native_sim samples/01_hello_world -p
west build -t run

samples/01_hello_world/

├── CMakeLists.txt
├── prj.conf
├── README.rst
├── sample.yaml
├── 01_hello_world
└── src
 └── main.c

Equivalent in the Zephyr main Repository: zephyr/samples/hello_world.1

01_hello_world

`samples/01_hello_world/CMakeLists.txt`

SPDX-License-Identifier: Apache-2.0

cmake_minimum_required(VERSION 3.20.0)

find_package(Zephyr REQUIRED HINTS $ENV{ZEPHYR_BASE})
project(hello_world)

target_sources(app PRIVATE src/main.c)

01_hello_world Configuring the Build System

`samples/01_hello_world/src/main.c`

/*
 * Copyright (c) 2012-2014 Wind River Systems, Inc.
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#include <zephyr/kernel.h>

int main(void)
{

printk("Hello World! %s\n", CONFIG_BOARD);
return 0;

}

01_hello_world Application Source Code

west build -b native_sim samples/01_hello_world/ -p
-- Found host-tools: zephyr 0.17.0 (/home/jonas/zephyr-sdk-0.17.0)
-- Found toolchain: zephyr 0.17.0 (/home/jonas/zephyr-sdk-0.17.0)
[..]

Parsing /home/jonas/git/zephyrproject/zephyr/Kconfig
-- The C compiler identification is GNU 12.2.0
-- The CXX compiler identification is GNU 12.2.0
-- The ASM compiler identification is GNU
-- Found assembler: /home/jonas/zephyr-sdk-0.17.0/arm-zephyr-eabi/bin/...
-- Configuring done (3.0s)
-- Generating done (0.1s)
-- Build files have been written to: .../zephyr-workshop/build
-- west build: building application
[1/117] Preparing syscall dependency handling

[2/117] Generating include/generated/zephyr/version.h
-- Zephyr version: 4.1.0 (/home/jonas/git/zephyrproject/zephyr), build: v4.1.0
[117/117] Linking C executable zephyr/zephyr.elf
Memory region Used Size Region Size %age Used
 FLASH: 8094 B 256 KB 3.09%
 RAM: 4 KB 64 KB 6.25%
 IDT_LIST: 0 GB 32 KB 0.00%

01_hello_world Application Build Output

Build Location:

build/

Executable Location:

build/zephyr/

Artifacts:

zephyr.elf|hex|bin

zephyr.map

autoconf.h (Kconfig options)
devicetree_generated.h (Generated

devicetree header)
Kconfig.dts (devicetree conf)

build/

├── app
│ └── libapp.a
├── Kconfig
│ └── Kconfig.dts
└── zephyr
 ├── include
 │ └── generated
 │ └── zephyr
 │ ├── autoconf.h
 │ ├── devicetree_generated.h
 ├── zephyr.dts
 ├── zephyr.elf|bin|hex
 ├── zephyr_final.map

01_hello_world Build Artifacts

*** Booting Zephyr OS build v4.1.0 ***
Hello World! native_sim

01_hello_world Sample - Console Output

Description:

Logging subsystem example

Learn:

Log levels
Set loglevel via Kconfig
Logging backends, e.g. filesystem, BLE
Log messages printed in own thread
when system is idle

Sample:

Demonstrates logging output

samples/02_logging/prj.conf

samples/02_logging/src/main.c

1
CONFIG_LOG=y

#include <zephyr/logging/log.h>

LOG_MODULE_REGISTER(hello_world, LOG_LEVEL_DBG);

int main(void)
{

LOG_INF("info string");

return 0;
}

Equivalent in the Zephyr main Repository: zephyr/samples/subsys/logging/logger.1

02_logging Sample

*** Booting Zephyr OS build v4.1.0 ***
Hello World! native_sim
[00:00:00.001,691] <err> hello_world: error string
[00:00:00.001,843] <dbg> hello_world: main: debug string
[00:00:00.001,859] <inf> hello_world: info string
[00:00:00.001,874] <dbg> hello_world: main: int8_t 1, uint8_t 2
[00:00:00.001,887] <dbg> hello_world: main: int16_t 16, uint16_t 17
[00:00:00.001,899] <dbg> hello_world: main: int32_t 32, uint32_t 33
[00:00:00.001,921] <dbg> hello_world: main: int64_t 64, uint64_t 65
[00:00:00.001,956] <dbg> hello_world: main: char !
[00:00:00.002,383] <dbg> hello_world: main: s str static str c str
[00:00:00.002,567] <dbg> hello_world: main: d str dynamic str
[00:00:00.002,607] <dbg> hello_world: main: mixed str dynamic str --- ...
[00:00:00.002,640] <dbg> hello_world: main: mixed c/s ! static str ...
[00:00:00.002,653] <dbg> hello_world: main: pointer 0x5c3e
[00:00:00.002,674] <dbg> hello_world: main: HeXdUmP!
 48 45 58 44 55 4d 50 21 20 23 40 |HEXDUMP! #@

02_logging Sample - Console Output

Description:

Workqueue and Timer Example

Learn:

Workqueue, Timers, Runtime Contexts (IRQ, Thread)
Queue of work items
Work items are executed in a thread context
Timer is used to schedule work items
System workqueue is enabled by default

Sample:

Executes a function in different contexts

03_workqueues Sample

*** Booting Zephyr OS build v4.1.0 ***
Work Item Executed - runtime context:
 Thread Name: main
 Thread Priority: 0

Work Item Executed - runtime context:
 Thread Name: sysworkq
 Thread Priority: -1

Work Item Executed - runtime context:
 Thread Name: my_work_q_thread
 Thread Priority: 5

Timer Expired!!
Work Item Executed - runtime context:
 ISR Context!

Work Item Executed - runtime context:
 Thread Name: sysworkq
 Thread Priority: -1

03_workqueues Sample - Console Output

Description:

Shell subsystem example

Learn:

Command line interface
Command history, completion, help
Great for hardware validation, testing and
debugging

Sample:

Provides a basic shell

samples/04_shell/prj.conf

1

CONFIG_SHELL=y

Optional features
CONFIG_THREAD_STACK_INFO=y
CONFIG_KERNEL_SHELL=y
CONFIG_THREAD_MONITOR=y
CONFIG_BOOT_BANNER=n
CONFIG_THREAD_NAME=y
CONFIG_DEVICE_SHELL=y
CONFIG_POSIX_CLOCK=y
CONFIG_DATE_SHELL=y
CONFIG_THREAD_RUNTIME_STATS=y
CONFIG_THREAD_RUNTIME_STATS_USE_TIMING_FUNCTIONS=y
CONFIG_STATS=y
CONFIG_STATS_SHELL=y
CONFIG_SENSOR=y
CONFIG_SENSOR_SHELL=y
CONFIG_SENSOR_INFO=y
CONFIG_I2C_SHELL=y

Equivalent in the Zephyr main Repository: zephyr/samples/subsys/shell/shell_module.1

04_shell Sample

uart:~$ kernel thread list
Threads:

*0x20000720 shell_uart
options: 0x0, priority: 14 timeout: 0
state: queued, entry: 0x3ed9
Total execution cycles: 22360 (0 %)
stack size 2048, unused 932, usage 1116 / 2048 (54 %)

 0x20001288 sysworkq
options: 0x1, priority: -1 timeout: 0
state: pending, entry: 0x7169
Total execution cycles: 163 (0 %)
stack size 1024, unused 808, usage 216 / 1024 (21 %)

uart:~$
 bypass clear date
 demo device devmem
 dynamic help history
 kernel log log_test
 rem resize retval
 section_cmd shell shell_uart_release
 stats version

...

04_shell Sample - Console Output

uart:~$ i2c scan i2c@40003000
 0 1 2 3 4 5 6 7 8 9 a b c d e f
00: -- -- -- -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- 1d -- --
20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- 39 -- -- -- -- -- --
40: -- -- -- 43 -- -- -- -- -- -- -- -- -- -- -- --
3 devices found on i2c@40003000

uart:~$ i2c -h
i2c - I2C commands
Subcommands:

 scan : Scan I2C devices
 Usage: scan <device>
 recover : Recover I2C bus
 Usage: recover <device>
 read : Read bytes from an I2C device
 Usage: read <device> <addr> <reg> [<bytes>]
 read_byte : Read a byte from an I2C device
 Usage: read_byte <device> <addr> <reg>
 write : Write bytes to an I2C device
 Usage: write <device> <addr> <reg> [<byte1>, ...]
 write_byte : Write a byte to an I2C device
 Usage: write_byte <device> <addr> <reg> <value>

04_shell Sample - I2C Shell

uart:~$ sensor get ti_hdc@43
channel type=13(ambient_temp) index=0 shift=6 num_samples=1
 value=132211120605ns (26.427000)
channel type=16(humidity) index=0 shift=6 num_samples=1
 value=132211120605ns (36.364745)

uart:~$ sensor info
device name: apds9960@39, vendor: Avago Technologies, model: apds9960, ...
device name: mma8652fc@1d, vendor: NXP Semiconductors, model: fxos8700, ...
device name: ti_hdc@43, vendor: Texas Instruments, model: hdc, ...
device name: temp@4000c000, vendor: Nordic Semiconductor, model: nrf-temp, ...

04_shell Sample - Sensor Shell

Description:

TI HDC1010: I2C Temperature and Humidity
Sensor

Learn:

Get Temperature and Humidity e.g. on the
reel board via Sensor API

Sample:

Demonstrates Sensor API
samples/05_sensor/src/main.c

1
sensor_sample_fetch(dev);

sensor_channel_get(dev, SENSOR_CHAN_AMBIENT_TEMP,
 &temp);

sensor_channel_get(dev, SENSOR_CHAN_HUMIDITY,
 &humidity);

/* print the result */
printk("Temp = %d.%06d C, RH = %d.%06d %%\n",
 temp.val1, temp.val2,
 humidity.val1, humidity.val2);

Equivalent in the Zephyr main Repository: zephyr/samples/sensor/ti_hdc.1

05_sensor Sample

*** Booting Zephyr OS build v4.1.0 ***
Running on arm!
Dev 0x801c name ti_hdc@43 is ready!
Fetching...

Temp = 22.852966 C, RH = 38.793945 %
Fetching...

Temp = 22.842895 C, RH = 38.897705 %
Fetching...

05_sensor Sample - Console Output

Description:

BLE Peripheral device, temperature
monitor

Learn:

BLE peripheral role and advertising
Health Thermometer Service (HTS)

Sample:

App to connect: nRF Connect for Mobile
(Android, iOS) samples/06_ble/prj.conf

1

CONFIG_BT=y
CONFIG_LOG=y
CONFIG_BT_SMP=y
CONFIG_BT_PERIPHERAL=y
CONFIG_BT_DIS=y
CONFIG_BT_DIS_PNP=n
CONFIG_BT_BAS=y
CONFIG_BT_DEVICE_NAME="Zephyr Health Thermometer"
CONFIG_BT_DEVICE_APPEARANCE=768
CONFIG_CBPRINTF_FP_SUPPORT=y
CONFIG_SENSOR_SHELL=y
CONFIG_SENSOR_INFO=y
CONFIG_I2C_SHELL=y

Equivalent in the Zephyr main Repository: zephyr/samples/bluetooth/peripheral_ht.1

06_ble Sample

*** Booting Zephyr OS build v4.1.0 ***
[00:00:00.380,645] <inf> bt_hci_core: HW Platform: Nordic Semiconductor (0x0002)
[00:00:00.380,676] <inf> bt_hci_core: HW Variant: nRF52x (0x0002)
[00:00:00.380,706] <inf> bt_hci_core: Firmware: Standard Bluetooth controller ...
[00:00:00.381,347] <inf> bt_hci_core: Identity: D0:6F:6B:78:0C:E8 (random)
[00:00:00.381,378] <inf> bt_hci_core: HCI: version 5.4 (0x0d) revision 0x0000, ...
[00:00:00.381,408] <inf> bt_hci_core: LMP: version 5.4 (0x0d) subver 0xffff
Bluetooth initialized
temp device is 0x28b5c, name is temp@4000c000
Advertising successfully started
Connected

temperature is 24C
temperature is 23.75C
Indication success
Indication complete

06_ble Sample - Console Output

Scanning for BLE devices Connected with nRF Connect App

06_ble Sample - Connect with a Smartphone

Control the passive Display

Description: Character Framebuffer
Sample
Sample: Writes text to the display

Updated display on the reel board

1

Equivalent in the Zephyr main Repository: zephyr/samples/subsys/display/cfb.1

07_display_cfb Sample

Test the Samples
Build and run the samples :

or

Task: Update the displayed name on the
passive display

1

west build -b native_sim samples/02_logging -p
west build -t run

west build -b reel_board@2 samples/02_logging -p
west flash

samples

├── 01_hello_world
├── 02_logging
├── 03_workqueues
├── 04_shell
├── 05_sensor
├── 06_ble
└── 07_display_cfb

Note: The sensor and ble samples require a board to run.1

Hands-on 3

Application Development

Classic

Mutexes, Semaphores
Conditional Variables, Message Queues
Polling API to wait for any out of multiple
conditions

Zbus

Comparable to D-Bus in Linux
Many-to-many communication
Simplifies thread synchronization

Zbus overview

docs.zephyrproject.org/latest/services/zbus1

IPC Mechanisms and Zephyr bus (Zbus)

https://docs.zephyrproject.org/latest/services/zbus/index.html

Button

Switch between system states (active,
sleep)

LED

Indicate system state
Run in own thread for smooth animations

Minimal modular application with zbus

Example Application

General: Code reuse, maintainability,
readability
IPC: Communication e.g. via Zbus
Context: Each module can be controlled
independently
Testing: Modules can be tested separately

app/

├── CMakeLists.txt
├── Kconfig
├── prj.conf
└── src
 ├── common
 │ ├── CMakeLists.txt
 │ ├── message_channel.c
 │ └── message_channel.h
 ├── main.c
 └── modules
 ├── button
 │ ├── button.c
 │ ├── CMakeLists.txt
 │ └── Kconfig.button
 └── led
 ├── led.c
 ├── CMakeLists.txt
 └── Kconfig.led

Modular Development

Isolated testing of modules

Add subsystems like shell , ztest for
test cases
Tests reference modules via CMake
Interfaces abstracted via Zbus

Example Test Structure:
test/

├── button
│ ├── CMakeLists.txt
│ ├── prj.conf
│ └── src/main.c
└── led
 ├── CMakeLists.txt
 └── src/main.c

test/button/CMakeLists.txt
target_sources(app PRIVATE src/main.c)
add_subdirectory(../../app/src/common common)
add_subdirectory(../../app/src/modules/button button)

// test/button/src/main.c
void button_test_msg_cb(const struct zbus_channel *chan) {
 const enum sys_msg *msg = zbus_chan_const_msg(chan);
 if (*msg == SYS_BUTTON_PRESSED) {
 LOG_INF("Button pressed!");
 }
}

ZBUS_LISTENER_DEFINE(button_test, button_test_msg_cb);
ZBUS_CHAN_ADD_OBS(button_ch, button_test, 1);

Testing Modules

Zephyr Test Runner (Twister)

west twister - Automates building
and running tests
Supports multiple platforms (real HW or
simulation)
Integration tests via sample.yaml

Run Integration Tests:

Example sample.yaml :

Output:

west twister -T app/ -T test/ --integration

integration_platforms:

 - reel_board
 - frdm_k64f
 - nrf52840dk/nrf52840

INFO - Total complete: 24/24 100%
INFO - 24 of 24 configurations passed
INFO - Run completed

Automated Testing with Twister

Currently: standby, sleep. Task: Add a third
state: active. Cycle via button: standby ->
sleep -> active

Sleep: LED off
Standby: LED blinking
Active: LED on

Hands-on 4: Extend the Application

06_ble measures the temp with the sensor
in the nRF52840 die. A higher precision is
possible by using the TI HDC1010 sensor.

Change the sample accordingly:

Confirm that the sensor is working
(Sensor Shell)
Enable the Sensor API
Change the sensor device and get
HDC1010 from DTS
SENSOR_CHAN_DIE_TEMP →
SENSOR_CHAN_AMBIENT_TEMP

Can you confirm a faster reaction time?

TI HDC1010 Temperature and Humidity Sensor

Hint: Check the sensor sample `05_sensor` for reference. Only a few lines need to be changed.1

Hands-on 5: BLE Sensor Improvements

Summary

Ecosystem:

Many components besides the RTOS itself,
e.g. drivers, networking.
Modular and hardware independent by
default!
Many concepts from Linux makes it easier
to get started.

Structure:

Ready-to-use structure for your
application.
Systems get more complex, avoid
developing from scratch.

Open Source:

Supply chain security.
No vendor lock-in.
Supported by large companies.

Community:

Active, questions and contributions
welcomed.

Slides and workshop material available at: github.com/jonas-rem/zephyr-workshop1

Key Points from the Workshop

https://github.com/jonas-rem/zephyr-workshop

CC BY-SA - This presentation is licensed under Creative Commons Attribution-ShareAlike.

Questions?

Backup Slides

Something worked in the past, but does
not work anymore
Example: The lvgl sample worked on the
reel_board in v4.0.0, but not with the
current main (7fc9c26fb0d)

Find the commit that caused a bug with git bisect

git bisect good
1ea35e is the first bad commit
commit 1ea35e237cc0aa26b8a3517144528e9781a56781
Author: ***
Date: Thu Jan 25 11:09:06 2024 +0100

 west.yml: Update lvgl module to v9.2.0

git bisect start
git bisect good v4.0.0
git bisect bad 7fc9c26fb0d
west update && \
west build -b reel_board@2 samples/subsys/display/lvgl/ -p &&
west flash
-> After flashing, test console and display to see if the
git bisect good|bad

 ... (repeat binary search for log2(N) steps)
 # log2(10000) ≈ 13.3 -> max 14 steps for 10k commits!

Debugging: git bisect

test/led/src/main.c

@@ -29,7 +29,9 @@ static int cmd_led(...)
 led_msg(SYS_STANDBY);
 break;
 /* Add your code here */
+ case 2:
+ led_msg(SYS_ACTIVE);
+ break;
 /* */
 default:
 shell_print(sh, "Invalid argument");
@@ -41,9 +43,9 @@ static int cmd_led(...)
 SHELL_SUBCMD_DICT_SET_CREATE(sub_led_cmds, cmd_led,
 (sys_sleep, 0, "System is sleeping"),
- (sys_standby, 1, "System is in standby")
+ (sys_standby, 1, "System is in standby"),
 /* Add your code here */
+ (sys_active, 2, "System is active")
 /* */
);

Hands-On 4: Extension to 3 States - Solution (Test)

app/src/common/message_channel.h

@@ -20,6 +20,10 @@ enum sys_states {
 /* Add your code here */
+ SYS_ACTIVE,
 /* */
 };

app/src/main.c

@@ -39,11 +39,14 @@ static void button_msg_cb(...)
 case SYS_STANDBY:
+ sys_state = SYS_ACTIVE;
+ LOG_INF("System state active");
 break;
 /* Add your code here */
+ case SYS_ACTIVE:
+ sys_state = SYS_SLEEP;
+ LOG_INF("System state sleep");
+ break;
 /* */

app/src/modules/led/led.c

@@ -75,7 +75,12 @@ static void led_fn(void)
 /* Add your code here */
+ case SYS_ACTIVE:
+ gpio_pin_set_dt(&led, 1);
+ printk("LED on\n");
+ ret = zbus_sub_wait(&led_subscriber, &chan,
+ break;
 /* */

Hands-On 4: Extension to 3 States - app

diff --git a/samples/06_ble/prj.conf b/samples/06_ble/prj.co
@@ -8,3 +8,4 @@ CONFIG_BT_BAS=y
 CONFIG_BT_DEVICE_NAME="Zephyr Health Thermometer"
 CONFIG_BT_DEVICE_APPEARANCE=768
 CONFIG_CBPRINTF_FP_SUPPORT=y
+CONFIG_SENSOR=y

diff --git a/samples/06_ble/src/hts.c b/samples/06_ble/src/h
@@ -25,8 +25,10 @@
 #include <zephyr/bluetooth/uuid.h>
 #include <zephyr/bluetooth/gatt.h>

+#include <zephyr/drivers/sensor.h>
+
 #ifdef CONFIG_TEMP_NRF5
-static const struct device *temp_dev = DEVICE_DT_GET_ANY(no
+static const struct device *temp_dev = DEVICE_DT_GET_ANY(ti
 #else
 static const struct device *temp_dev;
 #endif
@@ -104,7 +106,7 @@ void hts_indicate(void)
- r = sensor_channel_get(temp_dev, SENSOR_CHAN
+ r = sensor_channel_get(temp_dev, SENSOR_CHAN
 &temp_value);

Hands-On 5: Change Sensor to HDC1010

